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Abstract. It is shown that an analogue of Birkhoffs theorem of general relativity exists for 
electromagnetic fields in a scalar-tensor theory of gravitation proposed by Sen and Dunn 
when the scalar field introduced in the theory is independent of time. 

1. Introduction 

Recently Sen and Dunn (197 1) have proposed a new scalar-tensor theory of gravitation 
in which both the scalar and tensor fields have intrinsic geometrical significance. The 
scalar field in this theory is characterized by the function 4 = $ ( x i )  where x i  are 
coordinates in the four-dimensional Lyra manifold and the tensor field is identified with 
the metric tensor gij of the manifold. The field equations given by Sen and Dunn for the 
combined scalar-tensor fields are 

R . .  11 -igijR = w 4 - ’ ( 4  ,i .+ .I -1 2 g i , 4 , k & k ) - 4 - 2 ~ j  (1) 
where w =;, Tj  is the energy-momentum tensor of the field and R,  and R are, 
respectively, the usual Ricci tensors and Riemann curvature scalar (in our units 
c = 87rG = 1). Reddy (1973) has shown that unlike in the Brans-Dicke scalar-tensor 
theory (Brans and Dicke 1961), Birkhoff’s theorem of general relativity is valid in the 
present theory irrespective of the nature of the scalar field introduced in the theory. 

In  this paper we have shown, following Das (1960), that Birkhoff’s theorem of 
general relativity for electromagnetic fields exists in the scalar-tensor theory proposed 
by Sen and Dunn when the scalar field introduced in the theory is independent of time. 

2. Birkhoff’s theorem in Sen-Dum theory 

It was shown by Birkhoff (1927) that every spherically symmetric solution of the 
Einstein vacuum field equations is static. This fact is known as Birkhoff’s theorem. 
Shucking (1957) has shown that this theorem is valid in Jordan’s (1952) extended 
theory of gravitation when the gravitational invariant of the theory is independent of 
time. Reddy (1973) has shown that Birkhoff’s theorem holds in the Brans-Dicke 
theory of gravitation when the scalar field introduced in the theory is independent of 
time. It is also shown, therein, that Birkhoff’s theorem is valid in the present theory 
irrespective of the nature of the scalar field introduced. Das (1960) has extended 
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Birkhoff’s theorem in general relativity from the purely gravitational case to the 
combined electromagnetic and gravitational case. On similar lines we show, here, that 
Birkhoff’s theorem exists in the Sen-Dunn theory of gravitatidn when the scalar field 
introduced in the theory is independent of time. 

In the notation of Das (1960), the combined Sen-Dunn-Maxwell field equations in 
the absence of matter are 

Dj E F ~ =  0 

ZE ( 2 )  Ei = L  ikl i  
Fk1,j = F[kl,j] = 0 

1 I kl 
Q!Z I 1  R!- $$ - (Fikqk - $jFk’Fk.)+-2 - w (+)-2(giJ+,l+,j  - $,g + , k + , i )  = 0 

where commas and semicolons denote partial and covariant derivatives respectively. 
We consider the spherically symmetric metric in the form 

ds = eB dt2 - ep dr2 - r2(d02 + sin20 d@’) (3) 

where a = a(r, t ) ,  p = p ( r ,  t ) ,  with the scalar field + = +(r, t ) .  From considerations of 
spherical symmetry we retain only the radial components of the electromagnetic field 
and (Das 1960) 

F12 = F13 = F24 = F34 = 0.  (4) 

Without this choice, the transverse components would define a physically distinguish- 
able direction on the surface of a sphere which would destroy the spherical symmetry of 
the field. Demanding no other symmetry conditions O A  the surviving components F14 

and F23 and in view of the choice (4) the electromagnetic field equations 

D’ =D4 = E 2  = E 3  = 0 and D 2  = D 3  = E ’  =E4 = 0 ( 5 )  

yield 

~ 1 4  = ( E / ? )  e(p+8)’2 F23 = p sin 8 

where E and p are constants of integration which can be interpreted as the electric 
charge and the magnetic pole strength, respectively, of the point source. It was possible 
to include the magnetic contribution because we worked directly with the field strengths 
F14 and F23 instead of potentials and did not assume that they have any spatial 
symmetry. 

Now using (4), (5) and (6) we can write down the Sen-Dunn-Maxwell field 
equations (2) for the metric (3) as 

Q: + Q:= (1 +$r(P’-a’)-e”[l - ( ~ ~ + p ~ ) / r ~ + ’ ] }  = 0 
,2 

Q$= Q:Ee--(@” I @ a’@’ P I v a ’  B -+--- 
2 4  4 +-)-e- 2r ( 2 4  4 

where primes denote partial differentiation with respect to r and supercript dots denote 
partial differentiation with respect to time t. 



Birkhoffs theorem in scalar-tensor theory 187 

It can be seen that when 4 is a constant the above system reduces to the 
Einstein-Maxwell field equations in the spherically symmetric case and hence Birk- 
hoff’s theorem follows as shown by Das (1960). 

When the scalar field (.b is a function of r alone, that is 

( b = O  (7) 

f f = O  (8) 

we have from 0: = 0 

that is, (Y is independent of time. 
From 0; + 0: = 0 we have 

1 + - a’) = e” [I - ( E  * + p ’)/r’+’].  (9) 

Differentiating (9) partially with respect to t and using (7) and (8) we get 

P’=O. (10) 

That is, P is linearly separable in t and r so that 

P = f(r)  + 

where f and g are arbitrary functions of r and f respectively. Introducing a time 
transformation (Das 1960) 

dt’ = eg(f)/’ dt 

and dropping primes afterwards, it follows, in view of (8), that the metric (3) is static. 
Hence Birkhoff’s theorem is valid in this theory when the scalar field introduced is 
independent of time. 

When q5 is a function of both r and t Birkhoff’s theorem is not valid in this case since 
it can be seen from equation (9) that there is explicit scalar field interaction. 

By a straightforward calculation it should not be difficult to show on similar lines, 
that Birkhoff’s theorem for electromagnetic fields is also valid in the Brans-Dicke 
scalar-tensor theory of gravitation only when the scalar field introduced in the theory is 
independent of time. 

3. Conclusions 

We have shown that Birkhoff’s theorem of general relativity is true for electromagnetic 
fields in a scalar-tensor theory formulated by Sen and Dunn when the scalar field 
introduced in the theory is independent of time. This may, possibly, be due to the fact 
that the interaction of the time-dependent scalar field with the electromagnetic field 
stimulates electromagnetic monopole radiation. 
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